The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines
نویسندگان
چکیده
In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.
منابع مشابه
Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function.
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 funct...
متن کاملThe dynamics of replication licensing in live Caenorhabditis elegans embryos
Accurate DNA replication requires proper regulation of replication licensing, which entails loading MCM-2-7 onto replication origins. In this paper, we provide the first comprehensive view of replication licensing in vivo, using video microscopy of Caenorhabditis elegans embryos. As expected, MCM-2-7 loading in late M phase depended on the prereplicative complex (pre-RC) proteins: origin recogn...
متن کاملOrigin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase
Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPase...
متن کاملInteraction between the Origin Recognition Complex and the Replication Licensing Systemin Xenopus
The origin recognition complex (ORC) binds to origins of replication in budding yeast. We have cloned a Xenopus homolog of the largest ORC polypeptide (XORC1). Immunodepletion of XOrc1 from Xenopus egg extracts blocks the initiation of DNA replication. We have purified Xenopus ORC, consisting of a protein complex similar to yeast ORC. In Xenopus egg extracts, ORC associates with chromatin throu...
متن کاملNucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication.
During late mitosis and early G(1), a series of proteins are assembled onto replication origins, resulting in them becoming 'licensed' for replication in the subsequent S phase. Four factors have so far been identified that are required for chromatin to become functionally licensed: ORC (the origin recognition complex) and Cdc6, plus the two components of the replication licensing system RLF-M ...
متن کامل